
Comparing C-Based Object Systems 1
PREFACE

This paper presents a comparison of C-based
object systems. To provide a basis for that
comparison, the articles begin with a perspective
about why OOP is important, what the important
issues are with object orientation, and a brief
mention of other object systems from which
designers of C-based object systems have drawn
their inspiration.

SOFTWARE WITH CLASS?

Programming practices have evolved with one
primary motivation: improve the ability to
maintain and reuse software. Object-oriented
programming came about in an attempt to make
code more modular and easier to reuse. The
ideas behind object orientation are simple. To
make code more modular, combine data
structures and functions together: create
software modules that are inherently self-
contained. In other words, prefabricate software
so that code functionality comes in one piece.
Each module becomes a class.

To improve the ability to reuse software, allow
classes to inherit from one another. This way, a
new class can get all the functionality it needs
from other classes, with the exception of the
behavior that makes the new class unique. So,
the two big concepts behind object orientation
are 1) modular software components (by
combining data structure and behavior), and 2)
inheritance. While modularity, achieved through
the use of classes, simplifies code maintenance,
inheritance provides the sizzle of easy reuse by
letting a programmer incrementally modify and
expand class behavior.

The continuing challenge of software
development is managing complexity. Object-
oriented programming, with its inherent high
degree of modularity, helps. But class libraries by
no means ensure that software complexity is well
managed. Quite the contrary, there is a
disturbing trend in object-oriented software

construction towards class libraries with
hundreds of classes, but without the integration
between them to simplify usage or maximize
productivity. It may well turn out that the OOP
development tools that stand the test of time are
not those that try to offer everything through
diversity, but those that integrate well the basics
that most applications need. But class library
architecture is the subject another paper. This
one is about object systems.

OBJECT SYSTEMS

Object orientation is implemented by an object
system. An object system is the way in which
object-oriented programming is done,
determining which features of object orientation
are supported, and to what extent. Most often,
an object system is built into a new language, or
becomes an extension to an existing procedural
programming language. Object-oriented
language extensions often require a new
compiler, though C-based object systems are
usually implemented using a preprocessor to a C
compiler. The disadvantage to using such
extensive preprocessing is that providing source-
level debugging is difficult.

The success of any programming language is the
ability to give a programmer range and flexibility
in implementing software designs in the most
straight-forward manner. C usurped FORTRAN
and Pascal in popularity largely because C allows
an programmer greater range (with such
features as permitting a variable number of
function arguments, and built-in bit twiddling),
and flexibility in expression.

There has been heightened interest in recent
years with visual programming environments.
Just as creative people have historically chosen
between literary or graphic artistic expression,
perhaps we are beginning an age where software
developers will have a similar choice in their
medium. While this article is focused on written
OOP languages, the same evaluation criteria may
be applied to visual OOP tools.

Comparing C-Based Object Systems
Gary Odom, Electron Mining, emine@aol.com

Abstract:
An overview of the important issues of object-oriented programming, and a comparison of C-based object
systems (Objective-C, C++, and OOPC).

Comparing C-Based Object Systems 2

Comparing C-Based Object Systems
Gary Odom, Electron Mining, emine@aol.com

Abstract:
An overview of the important issues of object-oriented programming, and a comparison of C-based object
systems (Objective-C, C++, and OOPC).

Comparing C-Based Object Systems 3
Inheritance

Because inheritance is one of the key concepts
behind object orientation, one way to judge the
quality of an object system is how flexibly
inheritance can be specified. Multiple
inheritance is the ability of a class to inherit from
multiple classes. With multiple inheritance, a
new set of methods (behavioral functions) can
easily be added to an existing class. So, for
example, you could attach a debugging class to
another class without introducing new sequential
links in the inheritance chain; the debugging
class could verify the validity of data in objects of
the target class. Most often, multiple inheritance
is used to create a subclass that combines a class
with primary functionality with another class
that adds some ancillary characteristics. For
example, a text graphic class (cTextGraphic)
would inherit from a text class (cText) for text
processing, plus inherit from a graphic class
(cGraphic) to allow a user to treat the text as a
graphic object (as in an object-oriented drawing
program). Because it is so convenient, most
current object systems support multiple
inheritance.

An advanced object system allows inheritance
and methods to be defined dynamically, while a
program runs. This is called dynamic definition.

Class-Object Schizophrenia

The theory of object orientation makes a clear
distinction between classes and objects. Classes
are object factories, templates that exist only in
source code. A class specifies object data
structure, while a class itself has no data. A class
just has methods, so that objects can take
function calls. Objects alone exist as dynamic
entities in memory as a program runs. An object
can’t have methods separate from the class it
inherits from, and a class can’t have its own
data.

This fundamental distinction between classes
and objects can be blurred to considerable

benefit. Smalltalk and Objective-C allow classes
to have their own methods (class methods), apart
from the methods an object that inherits from
the class has.

In an advanced object system using flexible
class-object construction, classes may have their
own data structure (class variables) and their
own methods (class methods), and objects may
have their own methods (object methods),
separate from the class methods they inherit.
These capabilities provide flexibility in software
design and implementation, as well as giving
conceptual consistency to working with objects.
While theory may put a wall between classes and
objects, eliminating class-object distinctions
gives a developer great practical flexibility in
meeting design requirements.

There is another aspect of object orientation that
defines the quality of an object system: dispatch
control.

Dispatch Control

Object orientation introduces a rather strange
concept: calling a function without knowing
exactly what function is going to be called. This
happens because different classes can use the
same function name. For example, to draw an
object, you might write draw(self), where self is
the object to be drawn. A dispatch mechanism is
used to find the right method to call based upon
the class inheritance of the self object. The
technical term for this function-calling shell
game is polymorphism (Greek (to me) for
“multiple shapes”). Polymorphism is great
because it lets code become very general: you
can draw all objects on a page by calling
draw(self) in a loop, where the loop assigns self
from a page object array.

Polymorphism can mean finding the right class
method to dispatch to at run time (dynamic
binding), rather than binding a function call at
compile time (static binding) (what linkers do for
a living). Method dispatch with dynamic binding

Comparing C-Based Object Systems
Gary Odom, Electron Mining, emine@aol.com

Abstract:
An overview of the important issues of object-oriented programming, and a comparison of C-based object
systems (Objective-C, C++, and OOPC).

Comparing C-Based Object Systems 4
is one overhead imposed by object orientation.
This overhead is the price paid for quicker
development time, smaller code size, flexibility in
using prefabricated software, and easier
maintenance. Hybrid languages, such as C++,
let a programmer go back to procedural
programming for time-critical code, whereas this
is not an option with a pure object-oriented
language such as Smalltalk.

Comparing C-Based Object Systems
Gary Odom, Electron Mining, emine@aol.com

Abstract:
An overview of the important issues of object-oriented programming, and a comparison of C-based object
systems (Objective-C, C++, and OOPC).

Comparing C-Based Object Systems 5
Just as flexibility in specifying inheritance is
important, so is flexibility in dispatch. Features
of dispatch flexibility are being able to call
multiple methods by a single function call
(multiple dispatch), controlling which methods
are called and in what order (dispatch control),
being able to dispatch to a specific method, and
dispatching based upon multiple arguments
(called multi-methods).

The essence of high-quality dispatch in an object
system is being able to call multiple methods in a
single function call (multiple dispatch), and
being able to control method call order (dispatch
control). Imagine a resource-based picture class
(cPicture), which inherits from a resource class
(cResource). To draw a cPicture object
(draw(picture)), you want to first make sure the
picture resource is in memory. The cResource is
used as a before-method, to check and load the
resource if it has been purged. The cPicture
draw method, which draws the picture, is an
after-method.

An advanced object system allows dispatch
control using before- and after-methods. A truly
flexible object system lets dispatch control be
altered dynamically, while a program runs, as
part of dynamic definition.

Another aspect of dispatch control is being able
to dispatch to a specific class method, rather
than accepting the default dispatch. For
example, you may want to draw just the handles
on a graphic object by calling
dispatch_to(cGraphic, draw,self), rather
than calling draw(self), which draws an object
and its handles. Almost all object systems offer
this capability.

Multi-methods are methods dispatched based
upon multiple arguments.

Object Links

One of the problems with procedural
programming is that it takes effort to build self-

contained, reusable software modules. But is it
easy to link data structures through functions.

In a role reversal to procedural programming,
the modular, decentralized nature of object
orientation presents an interesting design
decision: how best to link and integrate related
objects (and classes). A significant challenge
with object-oriented programming is providing
systematic links between objects of different
classes. While object links are the basis for
object-oriented databases (OODB), they are also
a necessary ingredient of any object-oriented
application. Garbage collection can be
facilitated using object links. Object links can be
done willy-nilly using pointers in object data, but
such an approach isn't ideal for use in garbage
collection, or OODB construction. Because
object links are a structural element of any
object-oriented application, a good object system
should offer built-in support for object links.

Dynamic Definition

The single most important feature of an object
system is its level of dynamism. A fully dynamic
object system allows inheritance and methods to
be defined, and redefined, while an application is
running. Dynamic definition permits great
flexibility in software construction. There is a
wide chasm in object-oriented power between
static and dynamic object systems.

A simple example of dynamic inheritance :
reading in dialog item (DITL) resources from a
file, creating dialog item objects, then adding the
right class (control, picture, text, etc.) to a dialog
item once the item type is discovered (by reading
the resource data). This can be done in a static
language by not assigning the dialog item type
class before reading the dialog item resource
definition, but that involves processing in a way
dictated by the language’s limitations, rather
than doing things the way that might first come
to mind (which is usually the easiest way) if no
constraints were imposed. The flexibility of a
dynamic object system brings both small and

Comparing C-Based Object Systems
Gary Odom, Electron Mining, emine@aol.com

Abstract:
An overview of the important issues of object-oriented programming, and a comparison of C-based object
systems (Objective-C, C++, and OOPC).

Comparing C-Based Object Systems 6
large benefits.

Comparing C-Based Object Systems
Gary Odom, Electron Mining, emine@aol.com

Abstract:
An overview of the important issues of object-oriented programming, and a comparison of C-based object
systems (Objective-C, C++, and OOPC).

Comparing C-Based Object Systems 7
OBJECT SYSTEM SURVEY

Smalltalk

Dating back to 1967, Simula was the first object-
oriented language. But, because of its looming
influence, Smalltalk is the grandmother of
object-oriented programming languages.
Smalltalk was designed as part of an object-
oriented environment, with hundreds of classes,
where everything is object-oriented. There is no
class-object distinction with Smalltalk. Using the
Smalltalk environment is a “deep immersion”
experience in a land of objects, which is why it
has been such an inspiration.

Smalltalk has a surprising limitation: it does not
support multiple inheritance. Because even the
simplest message uses dynamic binding (even
the + in C = A + B), Smalltalk is slow.

The phraseology of “sending messages to
objects” is a holdover from Smalltalk, where the
syntax is object-verb (such as 'thisOval draw' to
draw thisOval), rather than the more typical
function-calling paradigm of verb-object (such as
draw(thisOval)). As with most languages, the
verb-object function call model is used in this
article.

CLOS

The Common Lisp Object System, known as
CLOS, is the ANSI-standard language extension
to Lisp that adds object orientation. CLOS is
noteworthy because, in a sea of tug-boat object
systems, CLOS is a luxury liner. CLOS supports
multiple inheritance, dispatch control, multi-
methods, flexible class-object construction,
dynamic binding and dynamic definition. (CLOS
has a dynamic object system.) To simplify the
application programming interface (API), CLOS
consistently uses generic functions. Generic
functions are polymorphic functions, such as
draw and act. The object orientation that CLOS
allows is tremendously flexible and expressive,
but because Lisp has a limited domain, namely

AI and list/language processing, CLOS, like Lisp,
will never become a mainstream language.

Apple's new Dylan language is an ambitious
version of CLOS (ambitious in its kitchen-sink
feature set; sort of "CLOS with an ADA
mindset").
C OBJECT SYSTEMS

Because of its simplicity, flexibility, efficiency and
range, C has become the industry choice for
systems and application software development.
It is natural to extend C into the object-oriented
realm. A few interesting attempts have been
made.

Objective-C

An early attempt to make C object oriented was
Objective-C. Objective-C adds Smalltalk-like
object orientation using a strict superset of C.
Objective-C adds a class definition mechanism,
an object data type, and a message expression
type. In Objective-C, each class is defined by two
files: an interface file, and an implementation
file. The interface file specifies the class
programming interface: class and superclass
names, along with instance variable (object)
declarations and method declarations. The
implementation file has class method code.

Objective-C supports multiple inheritance. Like
Smalltalk, Objective-C permits class methods.
Like C++, Objective-C provides ways to enforce
data hiding and restrict method access.
Objective-C lacks dispatch control or dynamic
definition.

Included in the NeXT operating system
environment is a set of classes written in
Objective-C for application development.
Because these classes are native to the platform,
NeXT application development is relatively easy,
especially compared to the complex nightmare of
the Macintosh Toolbox. Though there is little
marketing of the product, Objective-C is
available on the Macintosh as an MPW C

Comparing C-Based Object Systems
Gary Odom, Electron Mining, emine@aol.com

Abstract:
An overview of the important issues of object-oriented programming, and a comparison of C-based object
systems (Objective-C, C++, and OOPC).

Comparing C-Based Object Systems 8
preprocessor.

Commercially, Objective-C was ahead of its time.
Its corporate sponsor, Stepstone Corporation,
was near financial death before being
resuscitated by adoption for the NeXT line of
workstations. Now that NeXT itself has one foot
in the grave (having given up making hardware
after a flood of red ink), the long-term prospects
of Objective-C are once again under a cloud.

Comparing C-Based Object Systems
Gary Odom, Electron Mining, emine@aol.com

Abstract:
An overview of the important issues of object-oriented programming, and a comparison of C-based object
systems (Objective-C, C++, and OOPC).

Comparing C-Based Object Systems 9
C++

C++ is a another language extension to C. Only
part of the C++ extensions have to do with
object orientation. Operator overloading, for
example, adds flexibility to C, but has nothing to
do with object orientation per se (although the
use of overloading in C++ is restricted to the
object oriented aspects of C++).

The object-oriented part of C++ implements a
limited version of object orientation. Multiple
inheritance is supported, as are class variables,
class methods, multi-methods and optional
dynamic binding, but C++ lacks dispatch control
or dynamic definition. C++ classes have
automatic initialization and deallocation
methods.

C++ class constructs provide three levels of
enforced information hiding. Access to data or
methods can be private, protected or public.
Restrictions can be overridden (by friend
classes). The information-hiding features require
new language syntax that complicates what was
(in C) a lean language definition. Further, this
feature sits in odd contrast to C’s celebrated
openness with typecasting, data manipulation
and the free use of function pointers.

OOPC

OOPC (pronounced “oop-sea”) is an acronym for
“Object Oriented Programming in C”. OOPC has
an unusual implementation, in that it is not an
extension to the C language, but rather a set of
functions that turns C into an object-oriented
language. Object-oriented programs written in
OOPC look like standard C code, because they
are just that. This consistency with C simplifies
learning and using OOPC.

The look and feel of OOPC, while simple, is
deceiving. OOPC has all the features of CLOS:
multiple inheritance, dispatch control, flexible
class-object construction, and dynamic
definition. Multi-methods can be simulated. Plus,

OOPC comes with built-in support for object
links.

Like C++, OOPC provides automatic
initialization and deallocation methods. OOPC
also implements a form of garbage collection to
prevent an object from being released while it is
still linked to any other object. Unlike Objective-
C or C++, OOPC does not enforce data hiding or
restrict method access.

OOPC always uses dynamic binding, but this
overhead is minimized by using a dispatch table,
which essentially results in static binding while
still allowing dispatch control options.

To simplify the programming interface, OOPC
consistently uses verb functions. OOPC verb
functions are the same as CLOS generic
functions: verbs used as polymorphic functions.

Although it has existed since 1988, OOPC has
only
been released to the public as a commercial
product since 1992. The OOPC object system is
only part of the product currently sold for
Macintosh application development. OOPC
includes a set of code libraries for rapid
application development. Some low-level
function libraries exist for efficiency and
interface to the native operating system. OOPC
also comes with a class library that provide
automatic document management, an application
user interface, a graphics package, and
sophisticated, multiple-priority, threaded event
handling. The consistent use of verb functions,
streamlined class architecture and integration
between classes simplify learning and using the
OOPC class library, thus making OOPC suitable
for novice and professional programmer alike.

Table 1 compares the features of the three C-
based object systems discussed.

Table 1. Comparison of C-Based Object
Systems

Comparing C-Based Object Systems
Gary Odom, Electron Mining, emine@aol.com

Abstract:
An overview of the important issues of object-oriented programming, and a comparison of C-based object
systems (Objective-C, C++, and OOPC).

Comparing C-Based Object Systems 10
Feature Obj-C C++ OOPC

Multiple Inheritance Yes Yes Yes
Class Variables No Yes Yes
Class Methods Yes Yes Yes
Multi-Methods No No Yes

Object Methods No No Yes
Multiple Dispatch No No Yes
Dispatch Control No No Yes
OODB Support No No Yes
Dynamic Binding Yes Yes Yes
Dynamic Definition No No Yes

Comparing C-Based Object Systems
Gary Odom, Electron Mining, emine@aol.com

Abstract:
An overview of the important issues of object-oriented programming, and a comparison of C-based object
systems (Objective-C, C++, and OOPC).

